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I. Introduction 

This paper introduces the Key FSM (KFSM) – an extension of UML’s Statechart with 
additional features for effective system development.  

A. FSM’s Power and utility 

The FSM model is very popular among software and hardware developers, a fact that 
testifies to its usefulness. Although somewhat philosophical, it is beneficial to discuss and try to 
understand the reasons for this power. The following discussion in this subsection represents the 
author’s opinion. 

The FSM’s main power is in the notion of state: It is a well-defined, easy to communicate 
and document condition of the entity whose behavior is modeled by the FSM. E.g. a person may 
be described as being in the “sitting”, “standing” or “running” state; a car in “parked”, “traveling 
forwards”,” backing up” or “idling” state. Each state defines a static behavior of the element 
modeled by the FSM. That behavior of a well-defined state should not change. The modeled 
element’s behavior changes when it transitions to a different state, in response to an event. A 
sequence of transitions in response to events represents the element’s dynamic behavior. This 
“divide and conquer” approach is how the FSM enables system analysts and implementers to 
better manage complex dynamic behavior.  

The state is therefore very important to both model and implementation clarity and 
precision. This understanding leads us to put more emphasis on the state’s conditions and actions 
and to prefer the Moore FSM model (see below). According to this approach, transitions should 
be used only as means to move to another state in response to events. “”Light” actions may be 
specified on transitions, like logging or posting a message to a user—if it does not require 
confirmation; waiting for a user response is a lengthy process and it justifies an intermediate 
state. 

  The FSM model and its implementation can and should play a role in constructing 
dependable systems that recover gracefully and orderly from improbable system failures. KFSM 
and the design and analysis tools it provides are geared to support this novel engineering aim. 

B. Traditional FSM Models 

1. The Basic FSM Model 

The basic FSM defines a set of states, one of those states as an initial state, a set of events 
it responds to, a set transitions that are a mapping function: state X Event  (next) state and a 
subset of the states that are defined as terminal states – where the operation or response of the 
states-machine terminates. A mathematical definition of the classical FSM see the sidebar. 
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2. The Mealy Model 

This model defines actions or output for the transitions and not the states. These output 
actions are required then to bring the system from the transition’s source state to its “next” state, 
and could be different for each transition into the same state. This arrangement divides the 
responsibility of keeping a state in compliance with its requirements between several transition 
actions, increasing complexity and opportunities to err. 

3. The Moore Model 

Moore defined an FSM model that 
determines outputs as a function of the state. As 
stated in the introduction, the notion of the FSM as 
a model for dynamic behavior relies on a solid 
definition of static behavior in each state, an 
approach that favors the Moore model.  

Practically, some actions or output might be 
required that are associated with transition; those 
however should be secondary, like logging, posting 
a message (not waiting for a confirmation) and 
similar short processing operations that keep the 
transition as short or quick as possible. 

4. The Statechart Model 

Fast forward quite a few years; UML 2 
adopted the Statechart FSM model which is an 
extension of the basic FSM model. It adds the 
following features: 

(1) Orthogonal parallel FSMs or “Zones” per the 
UML notation.  
Several independent FSM’s can be operating in parallel. Events are transferred to all of 
them in parallel. 

(2) FSM hierarchy 
A state may encompass a group of parallel FSM’s. 

(3) History restart 
A sub FSM contained within a higher level state may have a “history” attribute that causes 
it to return to the last state it was in when the containing state was exited, instead of 
starting every time from the initial state. 

A more complete description and specifications of Statechart can be found in [4]. 

FSM’s Definition 
(Follows [1], [10] and many other 
sources, symbols changed.) 
M = (S, E, D, T, L, s0); where: 

S is the set {s} of states, 
E is the set {e} of trigger events or 
input that cause transitions 
D is the set {d} of the FSM's 
output events or actions 
T is the transition function that 
maps QXE to Q. T(si,e) is the next 
state sj of the machine. 
L is the output function that maps 
SXE to S. di = L(si,e) is the set of 
output events generated by the 
FSM when in the state si for all ej 
(Moore model) or when transition 
T(si,ej) happens (Mealy). 
s0 is the initial state of the FSM 
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II. Key FSM Concepts and Features 

In this chapter we will describe and discuss systems and software engineering concepts 
that can be added to the common FSM reviewed above. 

A. Control Structure 

An FSM defines its output values for each state, weather that output is set at the state 
(Moore model) or by the transitions into the state (Mealy model). Can any abstract variable be 
an output? How does it relate to system variables and the FSM scope? Should there be a relation 
between the outputs of various states? KFSM addresses those points with the control structure 
concept; at an abstract level, it is a set of data elements (i.e. application entities or their 
properties) defined as controlled by the FSM. The control structure must be within the scope of 
the process that run’s the FSM so it can control them. Additionally, all states must define values 
of all control structure’s elements. For good system engineering, if some of control structure’s 
elements are of no consequence at some states, they can be defined as “N/A,” and the reason 
for that choice documented as part of the KFSM design documentation. The control structure 
serves then to guide the analyst or designer to define all of the FSM output, improving consistency 
and reducing the risk of omission error. 

State N output

State 1 output
State i

State NState 1
Event1

Event2

Event3

Event4

Control 
            structure

State i 
output

 
Figure II-1: Control Structure as the output of all states 
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A control structure case Key FSM can treats as special is when it—the control structure 
comprises variables of a primitive type only that can be set directly; we will identify such a control 
structure as a control variables structure or shortly control variables. In that case the Key FSM 
state definition can include numeric values of the control variables and the KFSM implementation 
sets those values from the definition, there is no need for a line of code for implementation as 
will be seen later. 

An example FSM is used to throughout this work—a cruise control system 
control FSM. See Appendix 1: . It specifies a control structure comprising: 

ControlOn – A Boolean property indicating that the system is engaged and 
controls the car’s speed. 
setPoint – a continuous property (real or double variable) representing the 
set speed. 
accelerating – a Boolean property indicating that the set point is to be 
increased at a constant rate. 

These properties/variables in turn control other parts of the system, like a 
control and acceleration tasks. Note that all the example’s FSM states specify the 
values of these three control structure elements. 

B. Key FSM Models for Various Development Phases 

Different development phases produce different artifact types: requirements and design 
specifications, code and lastly, test cases and results. Analysts and developers may need to use 
specialized models and tools for each phase; Key FSM offers another option. 

Development is done in steps that deal with various aspects of the developed object: 
requirements define conditions, constraints and output, design outlines how the former are to be 
materialized, and implementation produces the operational code that is the product. All 
development processes include those steps in one form or another, even if not documented and 
done mentally. Finite state machines are used for those development phases routinely. Analysts 
and requirements engineer use FSM models to specify dynamic behavior of requirements. 
Architects and developers use FSM models to specify implementation, and eventually materialize 
it. But they all use fundamentally the same model structure. Key FSM offers a different solution—
an FSM part dedicated to the special needs of each of those development steps and relations 
between them.  

The key to this feature is the Key FSM state that holds distinct parts for the different 
development steps and thus forms a layered state definition and a layered FSM as Figure II-2 
depicts. 
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Figure II-2: KFSM layers 
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The KFSM state holds a layer for each of the development (see Figure II-2 (a)): 

General: the state’s name, attributes, and a reference to another KFSM/s if it is 
specified as having sub KFSM or even multiple KFSMs as separate UML regions. 
Requirements: specifies what condition is the KFSM control structure required to 
meet. 
Design: specifies how the required conditions will be met. 
Implementation: the KFSM implementation code. 
Test: Input and output information to be embedded in test scenario. 

Each of the state layers, combined with the general layer, the transitions definition and 
the control structure, can be viewed as a whole KFSM layer (see Figure II-2 (b)). 

Following is a detailed description of those layers. 

1. General layer 

The KFSM general layer represents the KFSM’s basic structure and includes: 

(a) states’ corresponding general layer properties: 
a. State’s name, 
b. Description, 
c. State’s attributes: terminal, timeout, 
d. Sub-FSM reference, for states defined by a whole FSM or even multi-zone 

concurrent FSM’s (UML), 
(b) KFSM’s transitions – all the mapping of events to transitions, as defined by the 

state transitions table. These transitions are based on the KFSM transitions model 
– the combination of all the transitions related features that gives KFSM its 
capability to address design and run time challenges. See section II.E. 

The general layer is actually an FSM in its common form, as used quite often by analysts 
and developers. The other layers add development phase specific information. Table ___ shows 
the format of KFSM’s general layer state definition table: 

State’s name Description Attributes 
[Name] [Description] Terminal=T/F, timeout=T/none, sub-

KFSMs: KFSM1, KFSM2… / none 

And the general layer states definition table for the Cruise Control example will be: 

State (name) Description Attributes 
Constant speed The system controls the car’s 

speed to match the set-point as 
close as possible. 

Terminal=F 
Timeout=none 
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Sub-KFSM=none 
Accelerating The system controls the car’s 

speed to match the set-point while 
increasing the set point at a 
constant acceleration.  

Terminal=F 
Timeout=Toa (factory configured) 
Sub-KFSM=none 

Decelerating The system does not control the 
car’s speed nor its throttle, letting it 
to coast, decelerating naturally. 

Terminal=F 
Timeout=none 
Sub-KFSM=none 

No control The system does not control the 
car speed. 

Terminal=F 
Timeout=none 
Sub-KFSM=none 

 

2. Requirements Layer 

When a KFSM model is used for requirements, its states should specify what should/shall 
system behavior or output be in the state, or what we will call here state requirements. Those 
requirements may take one of the following notations: 

(a) Requirement statement/s—the common form of requirements as used by the 
project or organization, e.g. the EARS notation [6], or 

(b) State invariant—a logic expression over control structure entities and variables that 
has to evaluate to true while the system is in the state, 

(c) Control variables value constraints, for a control structure comprised of control 
variables only. At requirements level, control variables are specified in an abstract 
form, like entities and their properties in a UML class diagram and to be valid, this 
form requires that those abstract properties are mapped to primitive or simple 
variables in the design. The benefit of using this form is that KFSM can implement 
the specified FSM with from this layer’s definition, with very little coding if at all 
(See IV.C below).  

This layer adds more formal and precise requirements information to the general layer, 
improving requirement model’s quality. Table ___ shows the format of KFSM’s general layer state 
definition table: 

State’s name Description Attributes Requirements 
[Name] [Description] Terminal=T/F, timeout=T/none, 

sub-KFSMs: KFSM1, KFSM2… 
/ none 

[Statement] or 
[State invariant] or 
[Control variable values] 

And the general layer states definition table for the Cruise Control example will be: 
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State (name) Description Attributes Requirements 
Constant speed The system controls the car’s 

speed to match the set-point 
as close as possible. 

Terminal=F 
Timeout=none 
Sub-KFSM=none 

controlOn=T 
setPoint=V0  
accelerating=F 

Accelerating The system controls the car’s 
speed to match the set-point 
while increasing the set point 
at a constant acceleration.  

Terminal=F 
Timeout=Toa (factory 
configured) 
Sub-KFSM=none 

controlOn=T 
setPoint=V0 + DV (1 + t/Dt) 
accelerating=F 

Decelerating The system does not control 
the car’s speed nor its 
throttle, letting it to coast, 
decelerating naturally. 

Terminal=F 
Timeout=none 
Sub-KFSM=none 

controlOn=F 
setPoint=VC (current speed)  
accelerating=F 

No control The system does not control 
the car speed. 

Terminal=F 
Timeout=none 
Sub-KFSM=none 

controlOn=F 
setPoint=VC (current speed)  
accelerating=F 

Not: from this table we see clearly that Decelerating and No control states are functionally 
identical and could be reduced or combined to one. 

 

3. Design Layer 

The next step is to design how to implement the state requirements. KFSM’s design layer 
offers two options for the design layer: 

(a) Design specifications—textual definition of what system components do at this 
state, data exchanged between them, and how all this implements the state’s 
requirements, 

(b) State actions—specify entry, do and exit actions. 
(c) Control variable values—if not defined at the requirements level. 

The first option is straight forward—the design layer contains textual or model based 
specifications. The second option is more interesting since it is specific to a (UML) FSM model. 
Three types of actions are defined for a state: entry-performed once on the entry to the state, 
do-performed periodically while in the state, and exit-performed once on the exit from the state. 
If choosing to use this state actions model, the design layer specifies the functionality of those 
actions required to meet the state’s requirements. Table II-5 summarizes roles and requirements 
of those state actions. 
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 State action constraints 
State 

requirements 
notation used 

Entry Action Do Action Exit Action 

Specification 
statements 

Prepare control structure 
entities and variables – 
bring them to required initial 
values; 

Perform any repeating action 
required to maintain 
compliance with state’s 
requirements 

Clean-up 

Control variable 
values 

Set values - - 

State invariant Bring control structure to 
comply with state invariant 

Maintain compliance with 
state invariant 

Clean-up 

 

Table II-6 defines the format of the design definition layer state table: 

State’s name Action Specifications 
[Name]  Input  

 Precondition  
 Output  
 Post-condition  
 Exceptions  
 Comments  

 

And the design layer states definition table for the Cruise Control example will be: 

State’s name Action Specifications 
Constant Speed Entry Input V0 – set point 

Precondition Vmin ≤ V0 ≤ Vmax; set point in valid range for control 
Output Call controlTask.start() 
Post-condition controlTask running && accelerating task does not run; 
Exceptions V0 < Vmin – no output; V0 > Vmax – no output. 
Comments ControlTask keeps car speed close to set point 

Do None  
Exit Input - 

Precondition - 
Output Call controlTask.stop() 
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Post-condition Control task not running && accelerating task does not run. 
Exceptions - 
Comments Stop control task. 

State’s name Action Specifications 
Accelerating Entry Input V0 – set point 

Precondition Vmin ≤ V0 ≤ Vmax; set point in valid range for control 
Output Call controlTask.start(); call acceleratingTask.start() 
Post-condition controlTask running && acceleratingTask running 
Exceptions V0 < Vmin – no output; V0 > Vmax – no output. 
Comments ControlTask keeps car speed close to set point as it is being increased at 

constant rate by acceleratingTask. 
Do None  
Exit Input - 

Precondition - 
Output Call controlTask.stop(); call acceleratingTask.stop() 
Post-condition Control task not running && accelerating task not running; 
Exceptions - 
Comments  

State’s name Action Specifications 
Decelerating Entry None  

Do None  
Exit None  

State’s name Action Specifications 
No control Entry None  

Do None  
Exit None  

Note: from this table we see clearly that Decelerating and No control states are functionally 
identical and could be reduced or combined to one. 

The third option—control variable values is documented like it is at the requirements level, 
see Table II-3 above and Table II-4 for the Cruise Control example. 

(1) Verification 

The design layer for each state is validated by analysis, showing how it meets the 
requirements layer. E.g. if the requirement for the Constant Speed state, from its state invariant 
is that the car’s speed is equal to the set point, a design as specified by Table II-7 above is 
verified by documenting that since the control task runs in this state, it keeps the speed at the 
set point (up to the control module accuracy), and since the accelerating task does not run, the 
set point is fixed. 
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(2) Formal requirements to design model 

A more formal model for the requirements to design transition is available for developers 
that use invariants to specify conditions at the context, outside the FSM, state invariant, and also 
use pre/post-conditions for state actions, as Figure II-3 depicts. 
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Figure II-3: Logic specifications relations between requirements and design 

Requirements Level 

(a) The FSM runs in some environment: a process, module, etc. That environment might 
have some invariant that continuous conditions in this context – the context invariant. 
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(b) When in a specific state, the state invariant specifies the conditions of the control 
structure and through it, the module controlled by the KFSM. The state invariant is 
stronger or more stringent than the context invariant—the specific state conditions. 

Design level 

(c) At the design level we specify the entry do and exit actions, by specifying their pre-
and-post conditions. 

(d) When we enter the state, we can only know that the context invariant applies. So the 
precondition to the entry action is the context invariant. 

(e) The entry function’s job is to bring the system initially to meet the state invariant, so 
that will be its post-condition. 

(f) The do action runs periodically and has to maintain the state invariant; so its 
precondition and post-condition are the state invariant. The assumption here is that 
the state invariant has some “wiggle room” or tolerance, like in control systems, and 
the do action repeatedly checks if the control structure gets close to the boundaries 
and pushes it to the center. In cases where the state invariant is completely discrete, 
there is no creeping of the system towards violating it, there is no need for the do 
action. 

(g) The exit action starts with the system complying with the state invariant, so it can be 
used as its precondition. It cleans up, and on completion has to meet only the weaker 
context invariant, so that will be its post-condition. 

This model builds a whole set of actions specifications out of the context and state 
invariants. 

4. The Implementation Layer 

Two parts are to implementing a functionality specified by a KFSM model: implementing 
the KFSM itself—switching between states in response to events, and implementing its states’ 
actions—the interface between the KFSM and the application code. 

The KFSM “mechanism” itself, which is basically the transitions and the calls to the 
different actions can be implemented in different ways. First it can be coded by the developer; 
but the complexities associated with the Statechart and KFSM additional features makes this is a 
risky proposition. The second option is to use an FSM code generator like the FSM compiler 
(FSMC) [7], if one was developed for KFSM. The resulting code is likely to be more solid, 
depending on the code generator’s quality. The third option is to develop or use an off-the shelf 
classes framework that implement the KFSM mechanism that can construct a KFSM object from 
its definition file—a KFSM engine. Part of object construction requires to bind the state actions 
and the control structure to that object. KFSM provides such a KFSM engine implementation. Its 
design considerations are described in section IV. 
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5. The Test Layer  

KFSM can be instrumental in system or integration level test. Coming up with a set of test 
cases that has a good coverage, is a pervasive challenge to the verification team. For the part of 
the functionality that was developed based on the KFSM model such test case scenarios can be 
generated by the model as FSM productions – a set of state sequences and the event sequences 
that generated them. That set, produced per the KFSM model, can exhaustive to the desired 
scenario length, can be used to test the implementation. In cases where the control structure 
comprises control variables only, the FSM output for each scenario step can be verified 
automatically.  

C. State timeout 

To prevent the system from “getting stuck” in a state, waiting for an event forever, states 
must have a timeout defined. A “timeout” event is generated if that timeout at the state was 
reached. Terminal states should not have a timeout specified, and in some special cases, non-
terminal states also do not require a timeout; the consideration that justify those cases should be 
documented as part of the general FSM model. The timeout attribute may therefore have a value 
of “none” and an attached justification text, documenting why that timeout value or no timeout 
was chosen. 

D. Exceptions 

Error or exception handling is a major subject in software development. Mishandled and 
unhandled exceptions account to about 50% of software defects by some accounts. When an 
exception happens its handling require to change process flow by taking step/s that are different 
than those of the nominal case. A model that specifies or/and executes process flows should take 
exceptions into account and handle them. Key FSM offers such a mechanism: 

(a) Exceptions created (thrown) by a state action are added to the event list as a state-specific 
events; no point to consider their effect on other states where they can’t be created, 

(b) Exceptions in functions/methods that perform transition action or event guard conditions 
form additional guard conditions on that transition path. See Figure II-4. 

Exception transitions looks quite complex as Figure II-4 illustrates, in practice however 
this part of the transitions scheme should end up being reasonably manageable; if it does get 
very complex, it is an indication of over complexity being built into the model, and an opportunity 
to correct that before coding. 
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Figure II-4: Exceptions handling by KFSM  

Notes: State1 actions: Action1 and Action2 raise exceptions Ex1 – 
Ex4. Ex1 is defined to cause transition T3 back to State1, after 
performing action A10 that post a message to the user/actor. Ex2 
and Ex4 cause transition T4 without an action, maybe to an error 
state. Event Ei causes conditioned transitions. Condition C1 causes 
transition T1 that involves Action7 that in turn may throw 
exceptions Ex7 and Ex8. Those are taken as conditions that cause 
transitions T5 and T6 correspondingly. 

 

E. Key FSM Transitions Model 

Here we define KFSM’s transition features: those that are part of the Statechart model are 
consider and labeled as baseline features, and those that are unique to Key FSM.  

C1: T1(State2/Action7) 
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Ei Ex3,  
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1 Assuming simple exception handling actions 
do not raise additional exception; the chain 
should end somewhere 
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1. Initial state/s. 

Normally and according to the formal FSM model (see [3]) there is only one initial 
state. Practically though, the initial state may be a function of certain conditions. 
Key FSM defines an internal “fixed” KeyFsmStart state and a “constant” start 
event (KeyFsmStart), with optional guard conditions like for any event transition. 
This provides the flexibility of starting at different states per guard conditions. 
See Figure II-5.  

 
Figure II-5: Conditional start at several states. 

 

 

2. Conditioned transition (baseline, Statechart) 

Various transition may be defined to apply a transition when an event happens: 

Condition C1 Condition C3

Condition C2

Implicit event E is the trigger to starting the machine

S3S2S1

KeyFsmStart

KeyFsmStart
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Correct conditions rules – they should cover all their variables’ space, and disjoined so 

there is no more than one is true at a time: 

(i)    C1 U C2 U C3 = TRUE; 

(ii) (C1  C2 = FALSE)    (C2  C3 = FALSE)    (C1  C3 = FALSE) 

3. Default condition 

One of the conditions may be defined as “Default,” evaluating as true for all cases that 
the other conditions don’t. 

 
Here the only correct conditions rule that remains is the disjoint of C1 and C2: 

Condition C1 Condition C3

Condition C2

Event E
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S1 S2 S2

Condition C1 Default D

Condition C2

Event E

S3S2S1

S3
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(i)    C1  C2 = FALSE; 

Note: Using the default condition may be a dangerous feature or a one that adds safety. 
If all conditions are equal and meaningful, this is dangerous as it gives the designer an easy way 
to ignore some conditions and let them fall into the default category. If only a few conditions are 
unique cases, it is a safe way to ensure all other situations fall into the default category and are 
not ignored.  

4. History restart (baseline, Statechart) 

The start or entry point to a KFSM may be defined as “History” or (H), switching to the 
state the system was at when execution of the KFSM stopped. This makes most sense for a sub 
FSM that runs in a state as depicted in Figure II-6, as that upper state (S0 in Figure II-6) may be 
exited and re-entered. KFSM specifies the following with regard to such state sub-FSM structure: 
(a) When the state containing the FSM is exited, the FSM is paused and it continues when the 

state is re-entered, 
(b) Events received by the upper FSM are checked if they are defined for that FSM, and if not are 

directed to the sub-FSM; it is highly recommended (although not a rule) that the same events 
will not be defined for both, 

(c) When the sub-fsm with a history entry is paused, its do-action is stopped from repeating 
(although it should complete if perfroming), but its exit action is not performed, since it will 
continue from that state on re-entry, 

(d) On re-entry, a sub-fsm with history re-entry continues the do-action, skipping the entry-
action.  

 
Figure II-6: History entry to a state’s sub-FSM 

S0 
 
 
 
 
 
 
 
 
 
 
 
 

S3S2S1

S4

H 
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5. Previous state 

Figure II-7 illustrates a situation where transitions from several states (S1 
to S3 in this case) lead to a common state (S4), and an event E1 (e.g. cancel) is to cause 
transitions back to the original state. A classic FSM requires to define a distinct state for 
the transition from each of the original states, so the FSM knows were to return to. This 
makes the FSM quite cumbersome in some cases; instead the KFSM’s transitions scheme 
defines a shorthand of “previous state.” 

 
Figure II-7: Transition to previous state (Sp) 

The previous state Sp is defined as the state the system was at before the 
current state Sc. A transition may define the next state as Sp – the previous state. 

6. Destination State 

In some cases an event (or different events) trigger transitions from 
different states to the same state, where a second event should cause a transition to 
different new states depending on the previous state. The mechanism KFSM offers to 
support these cases better while simplifying their specifications is the destination state. 
States may define a destination state through their definition XML file, no need to write 
code to do it; that destination state is used next if a transition is defined to “destination 
state.” To prevent errors, this destination state is kept only for the next state and erased 
later, so very old definition can’t be used. See Figure II-8. 

Note: this is equivalent to having a separate state for each original state, 
leading to a distinct destination state; the destination state feature reduces clutter and 
duplication in the KFSM definition. 

E1 
(Sp = S1)

E2
(Sp = S2)

E3
(Sp = S3)

E4

S3S2S1

Sc
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Figure II-8: Destination state  

Since at least some of the events that activate the FSM are asynchronous to its own operation 
nation state representation 

F. Key FSM Evaluation 

A major advantage of using a meta-model is that it can be checked for correctness using 
model-type specific rules. The FSM, as a mathematical and formal model supports such analysis 
and Key FSM specifically offers ample rules for evaluating a specific KFSM model. We divide those 
correctness rules to two types: structural and content rules. 

1. Structural KFSM Correctness Rules 

 

(1) Initial state/s 
At least one transition (no guard condition) exist from the KeyFsmStart state to an initial 
state. If more than one transition exists from the KeyFsmStart, they all have to be guard-
conditioned. 

(2) All states are defined 
A state exists with the name specified as next state of any transition. 

E1 
(Sd = S5)

E2
(Sd = S6)

E3
(Sd = S7)

E4

S3S2S1

S4

S8S6S5
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(3) All states are reachable 
Every real state (excluding the ArenaFsmStart state) has a transition to it. 

(4) Complete transitions definition 
Every event defines for each state either: 

a. A transition – next state and an optional transition action, or 
b. Void transition 
c. Reasoning documentation for both of those cases. 

(5) Timeout (I) 
A timeout attribute with time value or “none” symbol value is specified for every non-
terminal state, accompanied by a rationale documentation field. 

(6) Timeout (II) 
For each state with a timeout definition, a transition out triggered by a “timeout” event 
must exist. 

(7) Transition conditions (I) 
If an event appears as the trigger of more than one transition from the same state, all 
those transitions must have a guard transition defined, conditioning the triggering event. 

(8) Transition conditions (II) 
All conditions Ci on same events of a state must satisfy: 

 No default condition: 
(a) they are all disjoined: Ci AND Cj = FALSE, when i ≠ j (otherwise, the transition is 

ambiguous), 
(b) Their union is TRUE: C1 OR C2 OR ... Cn = TRUE (there is no harm in conditioning 

an event so that under some conditions it does not trigger a transition).  

Default condition specified:  
(a) Only one conditioned transition has a default condition specified, 
(b) All other (not default) conditions are disjoined: Ci AND Cj = FALSE (otherwise, the 

transition is ambiguous). 

(9) Exception events 
Every exception defined for state’s actions (entry, state and exit) defines a state specific 
event. 

(10) Exception conditions 
Every exception defined for a transition action is a condition on that transition’s event. 

(11) Terminal state action 
No state action should be defined for a terminal state – since this will cause the action to 
be performed forever – a warning should be issued for such a condition, to examine it. 

(12) Terminal states (I) 
Any state that has only exception triggered transitions from it is defined as terminal and 
vice versa.  
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(13) Terminal State (II) 
An exception triggered transition from a terminal state can only lead to that same state. 
(Its benefit is triggering a transition action for logging error messages, and invoking the 
state’s entry action again. Note that an exception at a terminal state is possible only if it 
has an entry or a do action defined.) 

(14) Terminal states (III) 
No timeout nor exit action are defined for a terminal state. 

(15) Terminal states (IV) 
Only exceptions event (id ends with "Exception") is allowed for a terminal state. 

2. Dynamic correctness rules 

The following rules depend on run-time data; those that can’t be evaluated using 
specification expressions should be evaluated in runtime: 

(16)  Transition conditions III (substitute rule (8) above if can’t be implemented as a static 
check) 

(1) All non-default conditions are mutually exclusive: only one of them evaluates to 
TRUE. Otherwise – raise an ApplicationDefinitionException, 
(2) One condition (including the default if defined) must evaluate as TRUE.   
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III. The Event-State Analysis (ESA) 

Often, FSM models are constructed intuitively and then reviewed by a team of experts; 
rarely such a model does not miss some transitions or even states. ESA is a semi-formal process 
that guides the analyst to find and complete those missing parts, improving its completeness and 
correctness considerably. In addition, it also leads the analyst to document decisions made in 
constructing and completing the model and their rationale, improving system maintainability. 

Formally or mathematically, it is based on the FSM definition’s transition mapping function: 
S x E  T. This function defines a transition for every combination of states and events, and this 
is the key to the method.  

The input to the ESA process is an FSM model that has been discussed and reviewed—
the nominal FSM. The process modifies the FSM model—adding missing transitions and states. 
The initial FSM being analyzed can be empty—the initial state alone (required), the process 
“completes” this empty model, in essence constructing the FSM. 

A more formal definition of the event-state analysis: 

Input: FSM model: A set S of states, a set E of events, and a set T of transitions, where Ei 
and Sj maps to Tk. S can be an empty set—we start with a “blank slate” and build the FSM model 
using this process. 

Output: The same FSM model, updated and completed: S’, E’, T’. 

Step 1: Exhaustive events list 

Verify that the events list of the FSM spec is complete. This is done by reviewing the list 
with SMEs and colleagues. In some cases the overall system has a master events list, at least of 
external events from the event-response diagram which is the highest level system description, 
those events should be reviewed in order to see if any affect the analyzed FSM’s control structure 
and are therefore relevant. 

Add the following events: 

- For each state that has a timeout defined, add a “timeout” event, 
- For each state that has state actions, add exception events, event key: 

exception-key+exceptionClass, 

Step 2: Applying events 

Iterate through the FSM’s states list, for each state Si: 

 Iterate through the events list, for each event Ej: 

  Consider if the event should trigger a transition from the state: 

a. Always or under certain conditions? For each transition with a guard 
condition or a transition action – add additional conditions for each 
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exception that can be thrown by the guard condition function and by 
the action method. 

b. To which state? An existing state or a new one? 

With those decisions, revise the appropriate transition table line or add one or more lines 
to the state transitions table: 

 State Event : Guard cond. Next state Documentation, Comments   
. . . 

0. Si Ej : C1  Reason for the guard and transition 
1. Si …    - “ - 
2. Si Ej: Ck Sj   - “ - 

Some comments to this step: 

(a) The input model’s set of states is never empty, it can however include only one 
state – the “FSM-start pseudo state. In this case we only apply the “start” pseudo 
event to it, consider if any guard conditions are required, and so define the initial 
transition/s to the initial state/s. In this case we use the ESA to construct the FSM 
rather than analyze and improve it.  

(b) In some cases we realize that an event should transition the FSM from the 
examined state Si, but none of the other states is appropriate to transition to. We 
need a new state for the system to be in. We define that state and add it at the 
end of the states’ list and table: 

 State name Description Specification(1) Comments   
3. New state Does something new Var1 = C1; 

Var2 = C2; … 
Terminal: N 
Timeout: N (or the time) 

Document any additional information and 
consideration. 

(1) The chosen specification notation (text specifications, state variables or state 
invariant for requirements, action specifications for design) is used for all states. 
The control variable constraints method is used here. 

(2) Since the new state is added at the end of the states’ table, the state iterator will 
reach it and will iterate all the events while it is the examined state. 

(3) In case the RA can’t answer the question what transition should be triggered by 
the event at the given state, a subject matter expert should be consulted. If there 
are too many cases like that, or iv the RA does not feel confident to take those 
decisions in the first place, the whole process can take place in an elicitation 
meeting with the SME’s. 

End of procedure, the FSM model has been updated with new transitions and states. 
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So what is this “magic” method? The essence of it is: check EVERY event against EVERY 
state, consider if it requires a transition and to which state. This semi-mechanical process finds 
many missing transitions and states in the starting nominal FSM. 

The key to succeeding with ESA is having a list of ALL the events that affect the FSM’s 
object. Every effort must be made not to miss any such event. If in a later point an event that 
should be considered but was missed is found, it can be added as will be shown later.  
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IV. KFSM Design and Implementation 

A. Requirements 

Key FSM implementation and its design and verification is done to a list of requirements. 
This paragraph defines the requirements for the Key FSM reference implementation. 

1. Transition model 

Key FSM implements the transition features described by section II.E above and by the 
UML FSM specifications. 

2. State content 

Key FSM implements state content as specified by section II.B above. 

3. Control Structure 

Key FSM implements the control structure concept as specified by section II.A above. 

4. Scalability and Efficiency 

Key FSM reference implementation is required to have linear scalability, and reasonably 
minimize instance memory and processing requirement (invest reasonable design effort). 

5. Integration 

Following are considerations relating to the manner in which Key FSM supports its 
integration into a system. 

(1) KFSM as a Member 

A class representing a processing unit of any kind can have a Key FSM object or instance 
as a member, signal events to it causing it to transition between states, apply its defines state 
action, control the control structure, or use State property like its id or name to control its 
processing. 

(2) KFSM State as a Member 

A class may have a member variable of class KeyFsmState – which is the state of a KFSM 
instance. The class may apply events to the KeyFsmState variable causing its KFSM to transition, 
which will replace the content and active parts of the KeyFsmState variable: properties (like name, 
description), control structure values, and do action task and timeout timer. Its new entry task 
was already invoked by the transition. 
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6. API’s 

Both the KeyFsm and KeyFsmState classes implement the KeyFsmApi that includes the 
following methods: 

(1) Boolean event(KeyEvent event) throws KeyException; where: 

- The method returns true iff the event caused a transition, 
- KeyEvent contains: 

(a) a key for identifying the type of the event,  
(b) a unique id, identifying the event instance, 
(c) data required to process the event by state actions. 
(d) Actor and session that created the event and whose access rights are to be used 

to access the control structure or other resources required by state and transition 
actions. 

- KeyException is defined by the integrating framework to satisfy its exception handling 
framework. 

(2) String getProperty(KeyFsmPropertyKey propertyKey, KeyContext context) throws 
KeyException; where: 

- KeyFsmPropertyKey is an enumeration type identifying properties available by the 
KFSM, 

- KeyContext provides access to system services like logging and to session and actor 
information including access rights to the various properties, 

- KeyException is defined by the integrating framework to satisfy its exception handling 
framework. 

 

B. Efficiency and scalability design 

This section describes the design of the KFSM implementation. The main consideration 
that guides the design is efficiency and scalability.1 Here are some considerations related to 
efficiency: 

(1) The KFSM as described holds many “members” or fields; many relate to 
requirements and design, and are not always useful for runtime. 

(2) The current state’s reference/s to the control structure do action task and timeout 
timer are the only instance specific members; all the rest are common to all 
instances. 

                                           
1 Scalability is the type of load growth with the number of instances. Linear growth is a “neutral” 

scalability, polynomial and faster growth is poor scalability, and logarithmic and n’th root are good 
scalability. Efficiency is the constant that multiplies such a normalized curve. The lower that constant is the 
higher and better the implementation efficiency, meaning that less server resources are needed for the 
same number of simultaneous user or instances. 
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From these considerations we derive the following efficiency design guidelines, its 
scalability curve will be linear with the number of instances, see Figure IV-1. 

(3) A “ReferenceKeyFsm” class constructs a referenceKeyFsm singleton object for 
each type of KFSM, i.e. KFSM of a specific definition (XML file).  

(4) The ReferneceKfsm singleton contains state singletons for all its states of class 
ReferenceKeyFsmState, that hold transition singleton. This is a KeyFsm instance 
factory—when a KeyFsm instance is required, the RefernceKeyFsm constructs one, 
which is not its sub-class. 

(5) A KFSM instance contains only an instance of the current state that is cloned from 
a state singleton, and a reference to the control structure of the object controlled 
by the KFSM. 

(6) The KeyFsm class has an event() method for signaling an event to the KFSM, a 
currentState() method for returning the current state and a property(key) method 
for returning a KeyFsm property like its name, description, etc. 

(7) A KeyFsmState instance is constructed by its factory ReferenceKeyFsm when a 
new current state is needed—during a transition. 

(8) The KeyFsmState class public interface also contains an event() methos; this is 
done so a KeyFsm’s current state can be a member of an object that signals events 
to it, the KeyFsmState object passes uses the KeyFsm instance’s event() method. 
In addition, the KeyFsmState class also supports the keyFsmProperty(key) method 
so KFSM property can be obtained. 

(9) When a record field or entity’s property is an FSM state, its type is specified as 
KeyFsmState(fsmKey), defining it unambiguously.  

This design, as depicted by Figure IV-1, incurs very little overhead per instance; only the 
small KFSM and KeyFsmState objects are constructed and maintained for each Key FSM instance. 
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ReferenceKeyFsm
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Figure IV-1: Class diagram representation of the Key FSM high level design 

 

C. Implicit control-variables assignment 

For control structure that includes only control variables, and their values are specified for 
each state, either at requirements or design levels, the developer may select this option and have 
the KeyFsmState, using its ref to the KeyFsm instance, set the values of control variables for the 
current state, creating a complete implementation without the need for any application 
programming. 
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V. Further Work - Key FSM Implementation 

A reference implementation of the design outlined above is work in progress, including a 
utility for editing and checking a Key FSM. 
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Appendix 1: Cruise Control Key FSM Example 

This simple system example to illustrate various aspects of creating and using a 
requirements FSM and then following up with a design. 

A. Requirements FSM, Baseline or Nominal Version 

After analyzing the system, the following baseline KFSM was defined: 

1. Events 
Event Description 
E1 Start – start constant speed control, 
E2 Stop – stop speed control 
E3 Up pressed – increase speed 
E4 Up released – got to desired speed 
E5 Down pressed – want to reduce speed 
E6 Down released – got to desired speed 
E7 Throttle error 

2. States: General and Requirements 
State (name / 

description, attr.) 
Specifications State variable 

constraints 
State invariant 

No control The system does not control the car speed. controlOn: False; 
Vc: ≥ 0; 

Vc: ≥ 0; 

Constant speed The system shall control car speed as 
reported by the input variable Vc, keeping it 
constant by controlling throttle position. 

controlOn: True 
Vc: V0 ± DV. 

V0 – DV < Vc < 
V0 + DV 

Accelerating The system shall continue to control the car 
speed, the set point speed is incremented by 
DV initially, and every Dt sec. afterwards. 
DV and Dt are constants. 

controlOn: True; 
Vc: V0 + DV (1 + 
t/Dt); 
DV and Dt are 
constants. 

V1 = V0 + DV(1 + 
t /Dt) AND 
V1 – DV < Vc < 
V1 + DV 

Decelerating The system shall stop controlling the throttle, 
letting it drop to idle and allow the car to coast 
to lower speed. 

controlOn: False; 
Vc(t + dt)  < Vc(t); 

Vc(t + dt)  < 
Vc(t); 
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3. Transitions 
 State Event : Guard cond. Next state Documentation, Comments   
1. No control Start Constant speed Obvious, nothing to add. 
2. Constant speed Stop No control Obvious, nothing to add. 
3. Constant speed Up pressed Accelerating Obvious, nothing to add. 
4. Constant speed Down released Decelerating Obvious, nothing to add. 
5. Constant speed Throttle error No control A SME decision to stop control on error. 
6. Accelerating Up released Constant speed Obvious, nothing to add. 
7. Accelerating Throttle error No control A SME decision to stop control on error. 
8. Accelerating Timeout No control SME decision not to let the driver accelerate 

indefinitely. 
9. Decelerating Down released Constant speed Obvious, nothing to add. 
10. Decelerating Throttle error No control A SME decision to stop control on error. 

And the corresponding state-transitions diagram: 

No control

Constant speed

AcceleratingDeccelerating
Down released Up released

Down pressed Up pressed

Stop Start

Figure 2: Nominal requirements FSM 

B. Event-state analysis 

The Event-state analysis (ESA) guides the analyst or engineer to complete the FSM model, 
identifying missing states and transitions. The baseline KFSM version is used as the input to the 
ESA procedure (described in section III above). The result is an updated KFSM definition: 
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1. Events 
Event Description 
E1 Start – start constant speed control, 
E2 Stop – stop speed control 
E3 Up pressed – increase speed 
E4 Up released – got to desired speed 
E5 Down pressed – want to reduce speed 
E6 Down released – got to desired speed 
E7 Throttle error 
E8 Timeout 
E9 Breaks applied 

 

2. States: General and Requirements 
State (name / 

description, attr.) 
Specifications State variable 

constraints 
State invariant 

No control The system does not control the car speed. controlOn: False; 
Vc: ≥ 0; 

Vc: ≥ 0; 

Constant speed The system shall control car speed as 
reported by the input variable Vc, keeping it 
constant by controlling throttle position. 

controlOn: True 
Vc: V0 ± DV. 

V0 – DV < Vc < 
V0 + DV 

Accelerating The system shall continue to control the car 
speed, the set point speed is incremented by 
DV initially, and every Dt sec. afterwards. 
DV and Dt are constants. 

controlOn: True; 
Vc: V0 + DV (1 + 
t/Dt); 
DV and Dt are 
constants. 

V1 = V0 + DV(1 + 
t /Dt) AND 
V1 – DV < Vc < 
V1 + DV 

Decelerating The system shall stop controlling the throttle, 
letting it drop to idle and allow the car to coast 
to lower speed. 

controlOn: False; 
Vc(t + dt)  < Vc(t); 

Vc(t + dt)  < 
Vc(t); 

3. Transitions 
 State Event : Guard cond. Next state (a) Documentation, Comments 

1. No control Start Constant speed As intended. 
2. No control Stop No transition  Irrelevant at this state. 
3. No control Up pressed No transition Interaction design decision not to respond to up 

and down button at when not controlling speed. 



The Key FSM   

© 2015 Arie Avnur, AA-SW-DEV.com  35 

4. No control Up released No transition - “ - 
5. No control Down pressed No transition - “ - 
6. No control Down released No transition - “ - 
7. No control Throttle error No transition Irrelevant at this state. 
8. No control Breaks applied No transition Irrelevant at this state. 
9. No control Timeout No transition No timeout. 
10. Constant speed Start No transition Irrelevant at this state. 
11. Constant speed Stop No control As intended. 
12. Constant speed Up pressed Accelerating As intended. 
13. Constant speed Up released No transition Impossible (pressing the button transitions to 

another state first). 
14. Constant speed Down pressed Decelerating As intended. 
15. Constant speed Down released  Impossible (pressing the button transitions to 

another state first). 
16. Constant speed Throttle error No control A SME decision to switch off control when 

getting an error. 
17. Constant speed Breaks applied No control A SME decision to switch off control when 

breaks are applied. 
18. Constant speed Timeout No transition No timeout. 
19. Accelerating Start No transition Disabled; interaction design decision not to 

respond to this button at this state. 
20. Accelerating Stop No transition Disabled; interaction design decision not to 

respond to this button at this state. 
21. Accelerating Up pressed No transition Not possible; already pressed. 
22. Accelerating Up released Constant speed As intended. 
23. Accelerating Down pressed No transition Disabled; interaction design decision not to 

respond to this button at this state. 
24. Accelerating Down released No transition Disabled; interaction design decision not to 

respond to this button at this state. 
25. Accelerating Throttle error No control SME decision to stop control on error event. 
26. Accelerating Breaks applied No control SME decision to stop control when beaks 

applied. 
27. Accelerating Timeout Constant speed SME decision to switch to constant speed. 
28. Accelerating Timeout No control SME decision not to let the driver accelerate 

indefinitely. 
29. Decelerating Start No transition Disabled; interaction design decision not to 

respond to this button at this state. 
30. Decelerating Stop No transition Disabled; interaction design decision not to 

respond to this button at this state. 
31. Decelerating Up pressed No transition Disabled; interaction design decision not to 

respond to this button at this state. 
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32. Decelerating Up released No transition Disabled; interaction design decision not to 
respond to this button at this state. 

33. Decelerating Down pressed No transition Not possible; already pressed. 
34. Decelerating Down released Constant speed As intended. 
35. Decelerating Throttle error No control SME decision to stop control on error event. 
36. Decelerating Breaks applied No control SME decision to stop control when beaks 

applied. 

And the corresponding state transitions diagram: 

 

No control

Constant speed

AcceleratingDeccelerating
Down released Up released

Down pressed Up pressed

Stop Start

Throttle error, breaks applied
Throttle error, timeout, 
breaks applied

Throttle error, 
breaks applied

 

The main additions here are timeout, and the additional event of breaks applied. 

C. Discussion of the example 

(a) The complete state transitions table has 36 rows compared with the 6 of the first, 
“nominal” version.  

(b) Four new meaningful transitions (red rows) were found. Note that the main addition here is 
the introduction of timeout and breaks applied events. An exception analysis reveals that in 
this case virtually all exception conditions end up generating a throttle error – an event 
already on the list, so no need to add events for those conditions. 



The Key FSM   

© 2015 Arie Avnur, AA-SW-DEV.com  37 

(c) Many events require no transition for simple reasons: either the event is impossible in this 
state, or a decision was made not to respond to the event and even disable it in some way. 
Many common FSM notations and models just leave those rows out as not-interesting; ESA 
requires to have those rows and specify “No transition”, documenting the reasoning. This 
prevents accidental response when code changes are made for continued development. 
Reasoning documentation supports safer maintenance. Key FSM implementation uses 
those rows to make sure there are no transitions in those cases, preventing arbitrary 
responses. 

(d) Some event–state combinations require expert decision what to do: which state to 
transition to or no transition. The analyst may present the question to a SME directly; the 
decision will be reviewed by the whole team later on. If there are too many such cases, an 
elicitation follow-up meeting to provide those decisions is justified. 

(e) Some transition decisions are the result of interaction design. This interface design process 
still produces requirement decisions (even if it may be considered being further 
downstream). 

(f) All rows contain rationale documentation in the documentation / comments column. 
Important for maintenance, when another developer considers to modify the FSM can read 
the reason for its definition and avoid errors. Some trivial rows are documented with “as 
intended” to record that this transition implements a basic system response to the event. 
For tracing transition decision, references to specific requirements, SME statement, etc. 

D. Step 5: Design 

The first design decision that has to be made is if to use an FSM to control the cruise 
control system. A relatively simple examination indicates that the four states of the requirements 
FSM are meaningful and a straight forward choice for implementation, so we decide to implement 
such an FSM. A design FSM with the same states and transitions serves as the specifications and 
model for implementation. 

Next design decision is how to implement the two main system functions: speed control 
and acceleration. Control experts develop a control module that keeps the car’s speed as close 
as possible to the set point that has to run every Tc mili-seconds. An acceleration module is 
developed that changes the set-point at the required constant rate that has to run every Ta mili-
seconds. Those modules can be called periodically by the do action of the constant speed and 
accelerating states. A second choice is that they are called by independent tasks that poll two 
control variables: controlOn and accelerating and call those modules when the variables have the 
value ‘true’. Yet a third choice is to control those two tasks by calling their start and stop methods 
by the entry and exit actions of the constant speed and accelerating states. 

To illustrate the Key FSM capability to implement the control function of such a system 
completely, without a need for coding, not even of state actions, we choose the second option—
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the two tasks will poll the control variables updated by the Key FSM, as depicted by the following 
diagram: 

Control structure variablesControl structure variables

Control task

Cruise Control FSMCruise Control FSM

controlOn
setPoint

Accelerating
Accelerate task

No controlNo control
controlOn = false
setPoint = 0
Accelerating = false

Constant speedlConstant speedl
controlOn = true
setPoint = V0
Accelerating = false

AcceleratingAccelerating
controlOn = true
setPoint = V0+(1+DV/Dt)
Accelerating = false

Down released Up released

Down pressed Up pressed

Stop

Throttle error, breaks applied
Throttle error, timeout, 
breaks applied

Throttle error, 
breaks applied

Update

DeceleratingDecelerating
controlOn = false
setPoint = 0
Accelerating = false

Start

Figure 3: Cruise control design and design FSM 

 

 

 


